
Milla Documentation
Release 0.1.2

Dustin C. Hatch

October 16, 2012





CONTENTS

i



ii



Milla Documentation, Release 0.1.2

Milla is an extremely simple WSGI framework for web applications

Contents:

CONTENTS 1



Milla Documentation, Release 0.1.2

2 CONTENTS



CHAPTER

ONE

RATIONALE

As of early 2011, there is a lot of flux in the Python world with regard to web frameworks. There are a couple of big
players, namely Django, Pylons, and TurboGears, as well as several more obscure projects like CherryPy and Bottle.
Having worked with many of these projects, I decided that although each has its strengths, they all also had something
about them that just made me feel uncomfortable working with them.

1.1 Framework Comparison

1.1.1 Django

Strengths

• Very popular and actively developed, making it easy to get help and solve problems

• Fully-featured, including an Object-Relational Mapper, URL dispatcher, template engine, and form library. Also
includes “goodies” like authentication, an “admin” application, and sessions

Discomforts

I am not specifically listing any of these issues as weaknesses or drawbacks, because they aren’t per-se. Honestly,
there isn’t anything wrong with Django, and many people love it. Personally, I don’t feel comfortable working with it
for a few reasons.

• Storing configuration in a Python module is absurd

• All of the components are so tightly-integrated it is nearly impossible to use some pieces without the others.

– I really don’t like its ORM. SQLAlchemy is tremendously more powerful, and isn’t nearly as restrictive
(naming conventions, etc.)

– The session handling middleware is very limited in comparison to other projects like Beaker

– I am not fond of the template engine and would prefer to use Genshi.

1.1.2 Pylons/Pyramid

The original Pylons was a very powerful web framework. It was probably my favorite framework, and I have built a
number of applications using it. Unfortunately, development has been discontinued and efforts are now being concen-
trated on Pyramid instead.

3

http://www.djangoproject.com/
http://pylonshq.com/
http://www.turbogears.org/
http://www.cherrypy.org/
http://bottlepy.org/
http://www.sqlalchemy.org/
http://beaker.groovie.org/
http://genshi.edgewall.org/
http://docs.pylonsproject.org/projects/pyramid/1.0/index.html


Milla Documentation, Release 0.1.2

Pylons

Strengths

• While not as popular as Django, there still a significant following

• The code base is very decoupled, allowing developers to swap out components without affecting the overall
functionality of the framework.

Weaknesses

• Overutilization of StackedObject proxies and global variables

Pyramid

I simply do not like Pyramid at all, and it is really disappointing that the Pylons project has moved in this direction.
Essentially everything that I liked about Pylons is gone. The idea of using traversal to map URLs to routines is clever,
but it is overly complex compared to the familiar URL dispatching in other frameworks.

• Tightly integrated with several Zope components, mostly interfaces (puke)

• Template renderers are insanely complex and again, I don’t like Zope interfaces. There is no simple way to use
Genshi, which I absolutely adore.

1.1.3 Other Frameworks

I haven’t used the other frameworks as much. In general, I try to avoid having my applications depend on obscure or
unmaintained libraries because when I find a bug (and I will), I need some assurance that it will be fixed soon. I do
not like having to patch other people’s code in production environments, especially if it is an application I am passing
along to a client.

I never really looked at TurboGears at all, and with the recent changes to the Pylons project, upon which TurboGears
is based, there is a great deal of uncertainty with regard to its future.

CherryPy is very nice, and I did a bit of work with it a while back. I thought it was dead for a long time, though, and I
have never really produced a production application built on it. With its most recent release (3.2.0), it is the first web
framework to support Python 3, which is exciting. I may revisit it in the near future, as a matter of fact.

1.2 The Truth

The truth is, I started Milla as an exercise to better understand WSGI. All of the frameworks discussed above are great,
and will most likely serve everyone’s needs. There really isn’t any reason for anyone to use Milla over any of them,
but I won’t stop you.

4 Chapter 1. Rationale



CHAPTER

TWO

API REFERENCE

2.1 milla.auth

2.1.1 milla.auth.decorators

Convenient decorators for enforcing authorization on controllers

Created Mar 3, 2011

Author dustin

Updated $Date$

Updater $Author$

milla.auth.decorators.auth_required(func)
Simple decorator to enforce authentication for a controller

Example usage:

class SomeController(object):

def __before__(request):
request.user = find_a_user_somehow(request)

@milla.auth_required
def __call__(request):

return ’Hello, world!’

In this example, the SomeController controller class implements an __before__ method that adds the
user attribute to the request instance. This could be done by extracting user information from the HTTP
session, for example. The __call__ method is decorated with auth_required, which will ensure that the
user is successfully authenticated. This is handled by a request validator.

If the request is not authorized, the decorated method will never be called. Instead, the response is generated by
calling the NotAuthorized exception raised inside the auth_required decorator.

class milla.auth.decorators.require_perms(*requirements)
Decorator that requires the user have certain permissions

Example usage:

class SomeController(object):

def __before__(request):
request.user = find_a_user_somehow(request)

5



Milla Documentation, Release 0.1.2

@milla.require_perms(’some_permission’, ’and_this_permission’)
def __call__(request):

return ’Hello, world!’

In this example, the SomeController controller class implements an __before__ method that adds the
user attribute to the request instance. This could be done by extracting user information from the HTTP
session, for example. The __call__ method is decorated with require_perms, which will ensure that the
user is successfully authenticated and the the user has the specified permissions. This is handled by a request
validator.

There are two ways to specify the required permissions:

•By passing the string name of all required permissions as positional arguments. A complex permission
requirement will be constructed that requires all of the given permissions to be held by the user in order to
validate

•By explicitly passing an instance of Permission or PermissionRequirement

2.1.2 milla.auth.permissions

Classes for calculating user permissions

Examples:

>>> req = Permission(’foo’) & Permission(’bar’)
>>> req.check(PermissionContainer([’foo’, ’baz’], [’bar’]))
True

>>> req = Permission(’login’)
>>> req.check([’login’])
True

>>> req = Permission(’login’) | Permission(’admin’)
>>> req.check([’none’])
False

class milla.auth.permissions.BasePermission
Base class for permissions and requirements

Complex permission requirements can be created using the bitwise and and or operators:

login_and_view = Permission(’login’) & Permission(’view’)
admin_or_root = Permission(’admin’) | Permission(’root’)

complex = Permission(’login’) & Permission(’view’) | Permission(’admin’)

class milla.auth.permissions.Permission(name)
Simple permission implementation

Parameters name (str) – Name of the permission

Permissions must implement a check method that accepts an iterable and returns True if the permission is
present or False otherwise.

check(perms)
Check if the permission is held

This method can be overridden to provide more robust support, but this implementation is simple:

6 Chapter 2. API Reference



Milla Documentation, Release 0.1.2

return self in perms

class milla.auth.permissions.PermissionContainer(user_perms=[], group_perms=[])
Container object for user and group permissions

Parameters

• user_perms (list) – List of permissions held by the user itself

• group_perms (list) – List of permissions held by the groups to which the user belongs

Iterating over PermissionContainer objects results in a flattened representation of all permissions.

class milla.auth.permissions.PermissionRequirement(*requirements)
Base class for complex permission requirements

class milla.auth.permissions.PermissionRequirementAll(*requirements)
Complex permission requirement needing all given permissions

class milla.auth.permissions.PermissionRequirementAny(*requirements)
Complex permission requirement needing any given permissions

Request authorization

Created Apr 5, 2011

Author dustin

Updated $Date$

Updater $Author$

exception milla.auth.NotAuthorized
Base class for unauthorized exceptions

This class is both an exception and a controller callable. If the request validator raises an instance of this class,
it will be called and the resulting value will become the HTTP response. The default implementation simply
returns HTTP status 403 and a simple body containing the exception message.

class milla.auth.RequestValidator
Base class for request validators

A request validator is a class that exposes a validate method, which accepts an instance of
webob.Request and an optional requirement. The validate method should return None on suc-
cessful validation, or raise an instance of NotAuthorized on failure. The base implementation will raise an
instance of the exception specified by exc_class, which defaults to :py:class‘NotAuthorized‘.

To customize the response to unauthorized requests, it is sufficient to subclass NotAuthorized, override its
__call__() method, and specify the class in exc_class.

exc_class
Exception class to raise if the request is unauthorized

alias of NotAuthorized

validate(request, requirement=None)
Validates a request

Parameters

• request – The request to validate. Should be an instance of webob.Request.

• requirement – (Optional) A requirement to check. Should be an instance of
Permission or PermissionRequirement, or some other class with a check
method that accepts a sequence of permissions.

2.1. milla.auth 7



Milla Documentation, Release 0.1.2

The base implementation will perform authorization in the following way:

1.Does the request have a user attribute? If not, raise NotAuthorized.

2.Is the truth value of request.user true? If not, raise NotAuthorized.

3.Does the request.user object have a permissions attribute? If not, raise NotAuthorized.

4.Do the user’s permissions meet the requirements? If not, raise NotAuthorized.

If none of the above steps raised an exception, the method will return None, indicating that the validation
was successful.

Note: WebOb Request instances do not have a user attribute by default. You will need to supply this
yourself, i.e. in a WSGI middleware or in the __before__ method of your controller class.

2.2 milla.dispatch

2.2.1 milla.dispatch.routing

URL router

Created Mar 13, 2011

Author dustin

Updated $Date$

Updater $Author$

class milla.dispatch.routing.Generator(request, path_only=True)
URL generator

Creates URL references based on a WebOb request.

Typical usage:

>>> generator = Generator(request)
>>> generator.generate(’foo’, ’bar’)
’/foo/bar’

A common pattern is to wrap this in a stub function:

url = Generator(request).generate

generate(*segments, **vars)
Combines segments and the application’s URL into a new URL

class milla.dispatch.routing.Router(trailing_slash=<class ‘milla.dispatch.routing.REDIRECT’>)
A dispatcher that maps arbitrary paths to controller callables

Typical usage:

router = Router()
router.add_route(’/foo/{bar}/{baz:\d+}’, some_func)
app = milla.Application(dispatcher=router)

In many cases, paths with trailing slashes need special handling. The Router has two ways of dealing with
requests that should have a trailing slash but do not. The default is to send the client an HTTP 301 Moved
Permanently response, and the other is to simply treat the request as if it had the necessary trailing slash. A

8 Chapter 2. API Reference



Milla Documentation, Release 0.1.2

third option is to disable special handling entirely and simply return HTTP 404 Not Found for requests with
missing trailing slashes. To change the behavior, pass a different value to the constructor’s trailing_slash
keyword.

Redirect the client to the proper path (the default):

router = Router(trailing_slash=Router.REDIRECT)
router.add_route(’/my_collection/’, some_func)

Pretend the request had a trailing slash, even if it didn’t:

router = Router(trailing_slash=Router.SILENT)
router.add_route(’/my_collection/’, some_func)

Do nothing, let the client get a 404 error:

router = Router(trailing_slash=None)
router.add_route(’/my_collection/’, some_func)

add_route(template, controller, **vars)
Add a route to the routing table

Parameters

• template – Route template string

• controller – Controller callable or string Python path

Route template strings are path segments, beginning with /. Paths can also contain variable segments,
delimited with curly braces.

Example:

/some/other/{variable}/{path}

By default, variable segments will match any character except a /. Alternate expressions can be passed by
specifying them alongside the name, separated by a :.

Example:

/some/other/{alternate:[a-zA-Z]}

Variable path segments will be passed as keywords to the controller. In the first example
above, assuming controller is the name of the callable passed, and the request path was
/some/other/great/place:

controller(request, variable=’great’, path=’place’)

The controller argument itself can be any callable that accepts a WebOb request as its first argument,
and any keywords that may be passed from variable segments. It can also be a string Python path to such
a callable. For example:

‘some.module:function‘

This string will resolve to the function function in the module some.module.

resolve(path_info)
Find a controller for a given path

Parameters path_info – Path for which to locate a controller

Returns A functools.partial instance that sets the values collected from variable seg-
ments as keyword arguments to the callable

2.2. milla.dispatch 9



Milla Documentation, Release 0.1.2

This method walks through the routing table created with calls to add_route() and finds the first whose
template matches the given path. Variable segments are added as keywords to the controller function.

template_re = <_sre.SRE_Pattern object at 0x3bcf0a0>
Compiled regular expression for variable segments

2.2.2 milla.dispatch.traversal

URL Dispatching

Created Mar 26, 2011

Author dustin

Updated $Date$

Updater $Author$

class milla.dispatch.traversal.Traverser(root)
Default URL dispatcher

Parameters root – The root object at which lookup will begin

The default URL dispatcher uses object attribute traversal to locate a handler for a given path. For example,
consider the following class:

class Root(object):

def foo(self):
return ’Hello, world!’

The path /foo would resolve to the foo method of the Root class.

If a path cannot be resolved, UnresolvedPath will be raised.

resolve(path_info)
Find a handler given a path

Parameters path_info – Path for which to find a handler

Returns A handler callable

exception milla.dispatch.UnresolvedPath
Raised when a path cannot be resolved into a handler

2.3 milla.app

Module milla.app

Please give me a docstring!

Created Mar 26, 2011

Author dustin

Updated $Date$

Updater $Author$

10 Chapter 2. API Reference



Milla Documentation, Release 0.1.2

class milla.app.Application(dispatcher)
Represents a Milla web application

Constructing an Application instance needs a dispatcher, or alternatively, a root object that will be passed
to a new milla.dispatch.traversal.Traverser.

Parameters

• root – A root object, passed to a traverser, which is automatically created if a root is given

• dispatcher – An object implementing the dispatcher protocol

Application instances are WSGI applications.

config
A mapping of configuration settings. For each request, the configuration is copied and assigned to
request.config.

2.4 milla.controllers

Stub controller classes

These classes can be used as base classes for controllers. While any callable can technically be a controller, using a
class that inherits from one or more of these classes can make things significantly easier.

Created Mar 27, 2011

Author dustin

Updated $Date$

Updater $Author$

class milla.controllers.Controller
The base controller class

This class simply provides empty __before__ and __after__ methods to facilitate cooperative multiple
inheritance.

class milla.controllers.FaviconController(icon=None, content_type=’image/x-icon’)
A controller for the “favicon”

This controller is specifically suited to serve a site “favicon” or bookmark icon. By default, it will serve the
Milla icon, but you can pass an alternate filename to the constructor.

Parameters

• icon – Path to an icon to serve

• content_type – Internet media type describing the type of image used as the favicon, de-
faults to ‘image/x-icon’ (Windows ICO format)

2.5 milla.util

Module milla.uti

Please give me a docstring!

Created Mar 30, 2011

Author dustin

2.4. milla.controllers 11



Milla Documentation, Release 0.1.2

Updated $Date$

Updater $Author$

milla.util.asbool(val)
Test a value for truth

Returns False values evaluating as false, such as the integer 0 or None, and for the following strings, irre-
spective of letter case:

•false

•no

•f

•n

•off

•0

Returns True for all other values.

Milla is released under the terms of the Apache License, version 2.0.

12 Chapter 2. API Reference

http://www.apache.org/licenses/LICENSE-2.0


CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

13



Milla Documentation, Release 0.1.2

14 Chapter 3. Indices and tables



PYTHON MODULE INDEX

m
milla, ??
milla.app, ??
milla.auth, ??
milla.auth.decorators, ??
milla.auth.permissions, ??
milla.controllers, ??
milla.dispatch, ??
milla.dispatch.routing, ??
milla.dispatch.traversal, ??
milla.util, ??

15


