

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Milla 0.1.2 documentation

Welcome to Milla’s documentation!

Milla is an extremely simple WSGI framework for web applications

Contents:

	Rationale
	Framework Comparison

	The Truth

	API Reference
	milla.auth

	milla.dispatch

	milla.app

	milla.controllers

	milla.util

Milla is released under the terms of the Apache License, version 2.0 [http://www.apache.org/licenses/LICENSE-2.0].

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011, Dustin C. Hatch.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Milla 0.1.2 documentation

Rationale

As of early 2011, there is a lot of flux in the Python world with
regard to web frameworks. There are a couple of big players, namely
Django [http://www.djangoproject.com/], Pylons [http://pylonshq.com/], and TurboGears [http://www.turbogears.org/], as well as several more
obscure projects like CherryPy [http://www.cherrypy.org/] and Bottle [http://bottlepy.org/]. Having worked with
many of these projects, I decided that although each has its strengths,
they all also had something about them that just made me feel
uncomfortable working with them.

Framework Comparison

Django

Strengths

	Very popular and actively developed, making it easy to get help and
solve problems

	Fully-featured, including an Object-Relational Mapper, URL dispatcher,
template engine, and form library. Also includes “goodies” like
authentication, an “admin” application, and sessions

Discomforts

I am not specifically listing any of these issues as weaknesses or
drawbacks, because they aren’t per-se. Honestly, there isn’t anything
wrong with Django, and many people love it. Personally, I don’t feel
comfortable working with it for a few reasons.

	Storing configuration in a Python module is absurd

	All of the components are so tightly-integrated it is nearly
impossible to use some pieces without the others.
	I really don’t like its ORM. SQLAlchemy [http://www.sqlalchemy.org/] is tremendously more
powerful, and isn’t nearly as restrictive (naming conventions, etc.)

	The session handling middleware is very limited in comparison to
other projects like Beaker [http://beaker.groovie.org/]

	I am not fond of the template engine and would prefer to use
Genshi [http://genshi.edgewall.org/].

Pylons/Pyramid

The original Pylons was a very powerful web framework. It was probably
my favorite framework, and I have built a number of applications using
it. Unfortunately, development has been discontinued and efforts are
now being concentrated on Pyramid [http://docs.pylonsproject.org/projects/pyramid/1.0/index.html] instead.

Pylons

Strengths

	While not as popular as Django, there still a significant following

	The code base is very decoupled, allowing developers to swap out
components without affecting the overall functionality of the
framework.

Weaknesses

	Overutilization of StackedObject proxies and global variables

Pyramid

I simply do not like Pyramid at all, and it is really disappointing that
the Pylons project has moved in this direction. Essentially everything
that I liked about Pylons is gone. The idea of using traversal to map
URLs to routines is clever, but it is overly complex compared to the
familiar URL dispatching in other frameworks.

	Tightly integrated with several Zope components, mostly interfaces
(puke)

	Template renderers are insanely complex and again, I don’t like Zope
interfaces. There is no simple way to use Genshi, which I absolutely
adore.

Other Frameworks

I haven’t used the other frameworks as much. In general, I try to avoid
having my applications depend on obscure or unmaintained libraries
because when I find a bug (and I will), I need some assurance that it
will be fixed soon. I do not like having to patch other people’s code
in production environments, especially if it is an application I am
passing along to a client.

I never really looked at TurboGears at all, and with the recent changes
to the Pylons project, upon which TurboGears is based, there is a great
deal of uncertainty with regard to its future.

CherryPy is very nice, and I did a bit of work with it a while back. I
thought it was dead for a long time, though, and I have never really
produced a production application built on it. With its most recent
release (3.2.0), it is the first web framework to support Python 3,
which is exciting. I may revisit it in the near future, as a matter
of fact.

The Truth

The truth is, I started Milla as an exercise to better understand
WSGI. All of the frameworks discussed above are great, and will most
likely serve everyone’s needs. There really isn’t any reason for anyone
to use Milla over any of them, but I won’t stop you.

 Copyright 2011, Dustin C. Hatch.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Milla 0.1.2 documentation

API Reference

	milla.auth
	milla.auth.decorators

	milla.auth.permissions

	milla.dispatch
	milla.dispatch.routing

	milla.dispatch.traversal

	milla.app

	milla.controllers

	milla.util

 Copyright 2011, Dustin C. Hatch.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Milla 0.1.2 documentation

 	API Reference

milla.auth

	milla.auth.decorators

	milla.auth.permissions

Request authorization

	Created:	Apr 5, 2011

	Author:	dustin

	Updated:	$Date$

	Updater:	$Author$

	
exception milla.auth.NotAuthorized[source]

	Base class for unauthorized exceptions

This class is both an exception and a controller callable. If the
request validator raises an instance of this class, it will be
called and the resulting value will become the HTTP response. The
default implementation simply returns HTTP status 403 and a simple
body containing the exception message.

	
class milla.auth.RequestValidator[source]

	Base class for request validators

A request validator is a class that exposes a validate method,
which accepts an instance of webob.Request and an
optional requirement. The validate method should return
None on successful validation, or raise an instance of
NotAuthorized on failure. The base implementation will
raise an instance of the exception specified by
exc_class, which defaults to :py:class`NotAuthorized`.

To customize the response to unauthorized requests, it is
sufficient to subclass NotAuthorized, override its
__call__() method, and specify the class
in exc_class.

	
exc_class

	Exception class to raise if the request is unauthorized

alias of NotAuthorized

	
validate(request, requirement=None)[source]

	Validates a request

	Parameters:	
	request – The request to validate. Should be an instance
of webob.Request.

	requirement – (Optional) A requirement to check. Should be
an instance of Permission
or PermissionRequirement,
or some other class with a check method that accepts a
sequence of permissions.

The base implementation will perform authorization in the
following way:

	Does the request have a user attribute? If not,
raise NotAuthorized.

	Is the truth value of request.user true? If not, raise
NotAuthorized.

	Does the request.user object have a permissions
attribute? If not, raise NotAuthorized.

	Do the user’s permissions meet the requirements? If not,
raise NotAuthorized.

If none of the above steps raised an exception, the method will
return None, indicating that the validation was successful.

Note

WebOb Request instances do not have a user
attribute by default. You will need to supply this yourself,
i.e. in a WSGI middleware or in the __before__ method of
your controller class.

 Copyright 2011, Dustin C. Hatch.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Milla 0.1.2 documentation

 	API Reference

 	milla.auth

milla.auth.decorators

Convenient decorators for enforcing authorization on controllers

	Created:	Mar 3, 2011

	Author:	dustin

	Updated:	$Date$

	Updater:	$Author$

	
milla.auth.decorators.auth_required(func)[source]

	Simple decorator to enforce authentication for a controller

Example usage:

class SomeController(object):

 def __before__(request):
 request.user = find_a_user_somehow(request)

 @milla.auth_required
 def __call__(request):
 return 'Hello, world!'

In this example, the SomeController controller class implements
an __before__ method that adds the user attribute to the
request instance. This could be done by extracting user
information from the HTTP session, for example. The __call__
method is decorated with auth_required, which will ensure that
the user is successfully authenticated. This is handled by a
request validator.

If the request is not authorized, the decorated method will never
be called. Instead, the response is generated by calling the
NotAuthorized exception raised inside
the auth_required decorator.

	
class milla.auth.decorators.require_perms(*requirements)[source]

	Decorator that requires the user have certain permissions

Example usage:

class SomeController(object):

 def __before__(request):
 request.user = find_a_user_somehow(request)

 @milla.require_perms('some_permission', 'and_this_permission')
 def __call__(request):
 return 'Hello, world!'

In this example, the SomeController controller class implements
an __before__ method that adds the user attribute to the
request instance. This could be done by extracting user
information from the HTTP session, for example. The __call__
method is decorated with require_perms, which will ensure that
the user is successfully authenticated and the the user has the
specified permissions. This is handled by a request validator.

There are two ways to specify the required permissions:

	By passing the string name of all required permissions as
positional arguments. A complex permission requirement will be
constructed that requires all of the given permissions to be
held by the user in order to validate

	By explicitly passing an instance of
Permission or
PermissionRequirement

 Copyright 2011, Dustin C. Hatch.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Milla 0.1.2 documentation

 	API Reference

 	milla.auth

milla.auth.permissions

Classes for calculating user permissions

Examples:

>>> req = Permission('foo') & Permission('bar')
>>> req.check(PermissionContainer(['foo', 'baz'], ['bar']))
True

>>> req = Permission('login')
>>> req.check(['login'])
True

>>> req = Permission('login') | Permission('admin')
>>> req.check(['none'])
False

	
class milla.auth.permissions.BasePermission[source]

	Base class for permissions and requirements

Complex permission requirements can be created using the bitwise
and and or operators:

login_and_view = Permission('login') & Permission('view')
admin_or_root = Permission('admin') | Permission('root')

complex = Permission('login') & Permission('view') | Permission('admin')

	
class milla.auth.permissions.Permission(name)[source]

	Simple permission implementation

	Parameters:	name (str) – Name of the permission

Permissions must implement a check method that accepts an
iterable and returns True if the permission is present or
False otherwise.

	
check(perms)[source]

	Check if the permission is held

This method can be overridden to provide more robust
support, but this implementation is simple:

return self in perms

	
class milla.auth.permissions.PermissionContainer(user_perms=[], group_perms=[])[source]

	Container object for user and group permissions

	Parameters:	
	user_perms (list) – List of permissions held by the user itself

	group_perms (list) – List of permissions held by the groups to
which the user belongs

Iterating over PermissionContainer objects results in
a flattened representation of all permissions.

	
class milla.auth.permissions.PermissionRequirement(*requirements)[source]

	Base class for complex permission requirements

	
class milla.auth.permissions.PermissionRequirementAll(*requirements)[source]

	Complex permission requirement needing all given permissions

	
class milla.auth.permissions.PermissionRequirementAny(*requirements)[source]

	Complex permission requirement needing any given permissions

 Copyright 2011, Dustin C. Hatch.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Milla 0.1.2 documentation

 	API Reference

milla.dispatch

	milla.dispatch.routing

	milla.dispatch.traversal

	
exception milla.dispatch.UnresolvedPath[source]

	Raised when a path cannot be resolved into a handler

 Copyright 2011, Dustin C. Hatch.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Milla 0.1.2 documentation

 	API Reference

 	milla.dispatch

milla.dispatch.routing

URL router

	Created:	Mar 13, 2011

	Author:	dustin

	Updated:	$Date$

	Updater:	$Author$

	
class milla.dispatch.routing.Generator(request, path_only=True)[source]

	URL generator

Creates URL references based on a WebOb request.

Typical usage:

>>> generator = Generator(request)
>>> generator.generate('foo', 'bar')
'/foo/bar'

A common pattern is to wrap this in a stub function:

url = Generator(request).generate

	
generate(*segments, **vars)[source]

	Combines segments and the application’s URL into a new URL

	
class milla.dispatch.routing.Router(trailing_slash=<class 'milla.dispatch.routing.REDIRECT'>)[source]

	A dispatcher that maps arbitrary paths to controller callables

Typical usage:

router = Router()
router.add_route('/foo/{bar}/{baz:\d+}', some_func)
app = milla.Application(dispatcher=router)

In many cases, paths with trailing slashes need special handling.
The Router has two ways of dealing with requests that should
have a trailing slash but do not. The default is to send the client
an HTTP 301 Moved Permanently response, and the other is to
simply treat the request as if it had the necessary trailing slash.
A third option is to disable special handling entirely and simply
return HTTP 404 Not Found for requests with missing trailing
slashes. To change the behavior, pass a different value to the
constructor’s trailing_slash keyword.

Redirect the client to the proper path (the default):

router = Router(trailing_slash=Router.REDIRECT)
router.add_route('/my_collection/', some_func)

Pretend the request had a trailing slash, even if it didn’t:

router = Router(trailing_slash=Router.SILENT)
router.add_route('/my_collection/', some_func)

Do nothing, let the client get a 404 error:

router = Router(trailing_slash=None)
router.add_route('/my_collection/', some_func)

	
add_route(template, controller, **vars)[source]

	Add a route to the routing table

	Parameters:	
	template – Route template string

	controller – Controller callable or string Python path

Route template strings are path segments, beginning with /.
Paths can also contain variable segments, delimited with curly
braces.

Example:

/some/other/{variable}/{path}

By default, variable segments will match any character except a
/. Alternate expressions can be passed by specifying them
alongside the name, separated by a :.

Example:

/some/other/{alternate:[a-zA-Z]}

Variable path segments will be passed as keywords to the
controller. In the first example above, assuming controller
is the name of the callable passed, and the request path was
/some/other/great/place:

controller(request, variable='great', path='place')

The controller argument itself can be any callable that
accepts a WebOb request as its first argument, and any
keywords that may be passed from variable segments. It can
also be a string Python path to such a callable. For example:

`some.module:function`

This string will resolve to the function function in the
module some.module.

	
resolve(path_info)[source]

	Find a controller for a given path

	Parameters:	path_info – Path for which to locate a controller

	Returns:	A functools.partial instance that sets
the values collected from variable segments as keyword
arguments to the callable

This method walks through the routing table created with calls
to add_route() and finds the first whose template
matches the given path. Variable segments are added as keywords
to the controller function.

	
template_re = <_sre.SRE_Pattern object at 0x3177eb0>

	Compiled regular expression for variable segments

 Copyright 2011, Dustin C. Hatch.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Milla 0.1.2 documentation

 	API Reference

 	milla.dispatch

milla.dispatch.traversal

URL Dispatching

	Created:	Mar 26, 2011

	Author:	dustin

	Updated:	$Date$

	Updater:	$Author$

	
class milla.dispatch.traversal.Traverser(root)[source]

	Default URL dispatcher

	Parameters:	root – The root object at which lookup will begin

The default URL dispatcher uses object attribute traversal to
locate a handler for a given path. For example, consider the
following class:

class Root(object):

 def foo(self):
 return 'Hello, world!'

The path /foo would resolve to the foo method of the
Root class.

If a path cannot be resolved, UnresolvedPath will be
raised.

	
resolve(path_info)[source]

	Find a handler given a path

	Parameters:	path_info – Path for which to find a handler

	Returns:	A handler callable

 Copyright 2011, Dustin C. Hatch.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Milla 0.1.2 documentation

 	API Reference

milla.app

Module milla.app

Please give me a docstring!

	Created:	Mar 26, 2011

	Author:	dustin

	Updated:	$Date$

	Updater:	$Author$

	
class milla.app.Application(dispatcher)[source]

	Represents a Milla web application

Constructing an Application instance needs a dispatcher, or
alternatively, a root object that will be passed to a new
milla.dispatch.traversal.Traverser.

	Parameters:	
	root – A root object, passed to a traverser, which is
automatically created if a root is given

	dispatcher – An object implementing the dispatcher protocol

Application instances are WSGI applications.

	
config

	A mapping of configuration settings. For each request, the
configuration is copied and assigned to request.config.

 Copyright 2011, Dustin C. Hatch.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Milla 0.1.2 documentation

 	API Reference

milla.controllers

Stub controller classes

These classes can be used as base classes for controllers. While any
callable can technically be a controller, using a class that inherits
from one or more of these classes can make things significantly easier.

	Created:	Mar 27, 2011

	Author:	dustin

	Updated:	$Date$

	Updater:	$Author$

	
class milla.controllers.Controller[source]

	The base controller class

This class simply provides empty __before__ and __after__
methods to facilitate cooperative multiple inheritance.

	
class milla.controllers.FaviconController(icon=None, content_type='image/x-icon')[source]

	A controller for the “favicon”

This controller is specifically suited to serve a site “favicon” or
bookmark icon. By default, it will serve the Milla icon, but you
can pass an alternate filename to the constructor.

	Parameters:	
	icon – Path to an icon to serve

	content_type – Internet media type describing the type of image
used as the favicon, defaults to ‘image/x-icon’ (Windows ICO format)

 Copyright 2011, Dustin C. Hatch.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Milla 0.1.2 documentation

 	API Reference

milla.util

Module milla.uti

Please give me a docstring!

	Created:	Mar 30, 2011

	Author:	dustin

	Updated:	$Date$

	Updater:	$Author$

	
milla.util.asbool(val)[source]

	Test a value for truth

Returns False values evaluating as false, such as the integer
0 or None, and for the following strings, irrespective of
letter case:

	false

	no

	f

	n

	off

	0

Returns True for all other values.

 Copyright 2011, Dustin C. Hatch.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 modules |

 	Milla 0.1.2 documentation

 Python Module Index

 m

 			

 		
 m	

 	[image: -]
 	
 milla	

 	
 	
 milla.app	

 	
 	
 milla.auth	

 	
 	
 milla.auth.decorators	

 	
 	
 milla.auth.permissions	

 	
 	
 milla.controllers	

 	
 	
 milla.dispatch	

 	
 	
 milla.dispatch.routing	

 	
 	
 milla.dispatch.traversal	

 	
 	
 milla.util	

 Copyright 2011, Dustin C. Hatch.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 	latest

 	0.1.2

 Navigation

 	
 index

 	
 modules |

 	Milla 0.1.2 documentation

Index

 A
 | B
 | C
 | E
 | F
 | G
 | M
 | N
 | P
 | R
 | T
 | U
 | V

A

 	

 	add_route() (milla.dispatch.routing.Router method)

 	Application (class in milla.app)

 	

 	asbool() (in module milla.util)

 	auth_required() (in module milla.auth.decorators)

B

 	

 	BasePermission (class in milla.auth.permissions)

C

 	

 	check() (milla.auth.permissions.Permission method)

 	config (milla.app.Application attribute)

 	

 	Controller (class in milla.controllers)

E

 	

 	exc_class (milla.auth.RequestValidator attribute)

F

 	

 	FaviconController (class in milla.controllers)

G

 	

 	generate() (milla.dispatch.routing.Generator method)

 	

 	Generator (class in milla.dispatch.routing)

M

 	

 	milla (module)

 	milla.app (module)

 	milla.auth (module)

 	milla.auth.decorators (module)

 	milla.auth.permissions (module)

 	

 	milla.controllers (module)

 	milla.dispatch (module)

 	milla.dispatch.routing (module)

 	milla.dispatch.traversal (module)

 	milla.util (module)

N

 	

 	NotAuthorized

P

 	

 	Permission (class in milla.auth.permissions)

 	PermissionContainer (class in milla.auth.permissions)

 	PermissionRequirement (class in milla.auth.permissions)

 	

 	PermissionRequirementAll (class in milla.auth.permissions)

 	PermissionRequirementAny (class in milla.auth.permissions)

R

 	

 	RequestValidator (class in milla.auth)

 	require_perms (class in milla.auth.decorators)

 	

 	resolve() (milla.dispatch.routing.Router method)

 	

 	(milla.dispatch.traversal.Traverser method)

 	Router (class in milla.dispatch.routing)

T

 	

 	template_re (milla.dispatch.routing.Router attribute)

 	

 	Traverser (class in milla.dispatch.traversal)

U

 	

 	UnresolvedPath

V

 	

 	validate() (milla.auth.RequestValidator method)

 Copyright 2011, Dustin C. Hatch.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 	latest

 	0.1.2

 _static/minus.png

_static/comment-bright.png

_modules/milla/dispatch/traversal.html

 Navigation

 		
 index

 		
 modules |

 		Milla 0.1.2 documentation »

 		Module code »

 		milla.dispatch »

 Source code for milla.dispatch.traversal

Copyright 2011 Dustin C. Hatch

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''URL Dispatching

:Created: Mar 26, 2011
:Author: dustin
:Updated: $Date$
:Updater: $Author$
'''

from milla.dispatch import UnresolvedPath

[docs]class Traverser(object):
 '''Default URL dispatcher

 :param root: The root object at which lookup will begin

 The default URL dispatcher uses object attribute traversal to
 locate a handler for a given path. For example, consider the
 following class::

 class Root(object):

 def foo(self):
 return 'Hello, world!'

 The path ``/foo`` would resolve to the ``foo`` method of the
 ``Root`` class.

 If a path cannot be resolved, :py:exc:`UnresolvedPath` will be
 raised.
 '''

 def __init__(self, root):
 self.root = root

[docs] def resolve(self, path_info):
 '''Find a handler given a path

 :param path_info: Path for which to find a handler
 :returns: A handler callable
 '''

 def walk_path(handler, parts):
 if not parts or not parts[0]:
 # No more parts, or the last part is blank, we're done
 return handler
 try:
 return walk_path(getattr(handler, parts[0]), parts[1:])
 except AttributeError:
 # The handler doesn't have an attribute with the current
 # segment value, try the default
 try:
 return handler.default
 except AttributeError:
 # No default either, can't resolve
 raise UnresolvedPath

 # Strip the leading slash and split the path
 split_path = path_info.lstrip('/').split('/')

 handler = walk_path(self.root, split_path)
 return handler

 © Copyright 2011, Dustin C. Hatch.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 		latest

 		0.1.2

_modules/milla/auth/permissions.html

 Navigation

 		
 index

 		
 modules |

 		Milla 0.1.2 documentation »

 		Module code »

 		milla.auth »

 Source code for milla.auth.permissions

Copyright 2011 Dustin C. Hatch

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''Classes for calculating user permissions

Examples::

 >>> req = Permission('foo') & Permission('bar')
 >>> req.check(PermissionContainer(['foo', 'baz'], ['bar']))
 True

 >>> req = Permission('login')
 >>> req.check(['login'])
 True

 >>> req = Permission('login') | Permission('admin')
 >>> req.check(['none'])
 False
'''

[docs]class PermissionContainer(object):
 '''Container object for user and group permissions

 :param list user_perms: List of permissions held by the user itself
 :param list group_perms: List of permissions held by the groups to
 which the user belongs

 Iterating over :py:class:`PermissionContainer` objects results in
 a flattened representation of all permissions.
 '''

 def __init__(self, user_perms=[], group_perms=[]):
 self._user_perms = user_perms
 self._group_perms = group_perms

 def __iter__(self):
 for perm in self._user_perms:
 yield perm
 for perm in self._group_perms:
 yield perm

 def __contains__(self, perm):
 return perm in self._user_perms or perm in self._group_perms

[docs]class BasePermission(object):
 '''Base class for permissions and requirements

 Complex permission requirements can be created using the bitwise
 ``and`` and ``or`` operators::

 login_and_view = Permission('login') & Permission('view')
 admin_or_root = Permission('admin') | Permission('root')

 complex = Permission('login') & Permission('view') | Permission('admin')
 '''

 def __and__(self, other):
 assert isinstance(other, BasePermission)
 return PermissionRequirementAll(self, other)

 def __or__(self, other):
 assert isinstance(other, BasePermission)
 return PermissionRequirementAny(self, other)

[docs]class Permission(BasePermission):
 '''Simple permission implementation

 :param str name: Name of the permission

 Permissions must implement a ``check`` method that accepts an
 iterable and returns ``True`` if the permission is present or
 ``False`` otherwise.
 '''

 def __init__(self, name):
 self.name = name

 def __unicode__(self):
 if isinstance(self.name, unicode):
 return self.name
 else:
 return self.name.decode('utf-8')

 def __str__(self):
 if isinstance(self.name, str):
 return self.name
 else:
 return self.name.encode('utf-8')

 def __eq__(self, other):
 return self is other or str(self) == str(other)

[docs] def check(self, perms):
 '''Check if the permission is held

 This method can be overridden to provide more robust
 support, but this implementation is simple::

 return self in perms
 '''

 return self in perms

[docs]class PermissionRequirement(BasePermission):
 '''Base class for complex permission requirements'''

 def __init__(self, *requirements):
 self.requirements = requirements

 def __str__(self):
 return unicode(self).encode('utf-8')

[docs]class PermissionRequirementAll(PermissionRequirement):
 '''Complex permission requirement needing all given permissions'''

 def check(self, perms):
 for req in self.requirements:
 if not req.check(perms):
 return False
 return True

[docs]class PermissionRequirementAny(PermissionRequirement):
 '''Complex permission requirement needing any given permissions'''

 def check(self, perms):
 for req in self.requirements:
 if req.check(perms):
 return True
 return False

 © Copyright 2011, Dustin C. Hatch.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 		latest

 		0.1.2

_modules/milla/app.html

 Navigation

 		
 index

 		
 modules |

 		Milla 0.1.2 documentation »

 		Module code »

 Source code for milla.app

Copyright 2011 Dustin C. Hatch

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''Module milla.app

Please give me a docstring!

:Created: Mar 26, 2011
:Author: dustin
:Updated: $Date$
:Updater: $Author$
'''

from milla.controllers import FaviconController
from milla.util import asbool
from webob.exc import HTTPNotFound, WSGIHTTPException, HTTPMethodNotAllowed
import milla.dispatch
import webob

__all__ = ['Application']

[docs]class Application(object):
 '''Represents a Milla web application

 Constructing an ``Application`` instance needs a dispatcher, or
 alternatively, a root object that will be passed to a new
 :py:class:`milla.dispatch.traversal.Traverser`.

 :param root: A root object, passed to a traverser, which is
 automatically created if a root is given
 :param dispatcher: An object implementing the dispatcher protocol

 ``Application`` instances are WSGI applications.

 .. py:attribute:: config

 A mapping of configuration settings. For each request, the
 configuration is copied and assigned to ``request.config``.
 '''

 DEFAULT_ALLOWED_METHODS = ['GET', 'HEAD', 'OPTIONS']

 def __init__(self, dispatcher):
 self.dispatcher = dispatcher
 self.config = {'milla.favicon': True}

 def __call__(self, environ, start_response):
 path_info = environ['PATH_INFO']
 try:
 func = self.dispatcher.resolve(path_info)
 except milla.dispatch.UnresolvedPath:
 if asbool(self.config.get('milla.favicon')) and \
 path_info == '/favicon.ico':
 func = FaviconController()
 else:
 return HTTPNotFound()(environ, start_response)

 request = webob.Request(environ)
 request.config = self.config.copy()

 # Sometimes, hacky applications will try to "emulate" some HTTP
 # method like POST or DELETE by specifying an _method parameter
 # in a POST request.
 if request.method == 'POST' and '_method' in request.POST:
 request.method = request.POST.pop('_method')

 allowed_methods = getattr(func, 'allowed_methods',
 self.DEFAULT_ALLOWED_METHODS)
 if request.method not in allowed_methods:
 allow_header = {'Allow': ', '.join(allowed_methods)}
 if request.method == 'OPTIONS':
 def options_response(request, *args, **kwargs):
 response = request.ResponseClass()
 response.headers = allow_header
 return response
 func = options_response
 return HTTPMethodNotAllowed(headers=allow_header)(environ,
 start_response)

 start_response_wrapper = StartResponseWrapper(start_response)
 request.start_response = start_response_wrapper
 try:
 # If the callable has an __before__ attribute, call it
 if hasattr(func, '__before__'):
 func.__before__(request)
 # If the callable is an instance method and its class has
 # a __before__ method, call that
 elif hasattr(func, 'im_self') and \
 hasattr(func.im_self, '__before__'):
 func.im_self.__before__(request)
 # The callable might be a partial, so check the inner func
 elif hasattr(func, 'func'):
 if hasattr(func.func, '__before__'):
 func.func.__before__(request)
 elif hasattr(func.func, 'im_self') and \
 hasattr(func.func.im_self, '__before__'):
 func.func.im_self.__before__(request)
 response = func(request)
 except WSGIHTTPException as e:
 return e(environ, start_response)
 finally:
 # If the callable has an __after__ method, call it
 if hasattr(func, '__after__'):
 func.__after__(request)
 # If the callable is an instance method and its class has
 # an __after__ method, call that
 elif hasattr(func, 'im_self') and \
 hasattr(func.im_self, '__after__'):
 func.im_self.__after__(request)
 # The callable might be a partial, so check the inner func
 elif hasattr(func, 'func'):
 if hasattr(func.func, '__after__'):
 func.func.__after__(request)
 elif hasattr(func.func, 'im_self') and \
 hasattr(func.func.im_self, '__after__'):
 func.func.im_self.__after__(request)

 # The callable might have returned just a string, which is OK,
 # but we need to wrap it in a WebOb response
 if isinstance(response, basestring) or not response:
 response = webob.Response(response)

 if not start_response_wrapper.called:
 start_response(response.status, response.headerlist)
 if not environ['REQUEST_METHOD'] == 'HEAD':
 return response.app_iter

class StartResponseWrapper():

 def __init__(self, start_response):
 self.start_response = start_response
 self.called = False

 def __call__(self, *args, **kwargs):
 self.called = True
 return self.start_response(*args, **kwargs)

 © Copyright 2011, Dustin C. Hatch.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 		latest

 		0.1.2

_modules/milla/controllers.html

 Navigation

 		
 index

 		
 modules |

 		Milla 0.1.2 documentation »

 		Module code »

 Source code for milla.controllers

Copyright 2011 Dustin C. Hatch
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''Stub controller classes

These classes can be used as base classes for controllers. While any
callable can technically be a controller, using a class that inherits
from one or more of these classes can make things significantly easier.

:Created: Mar 27, 2011
:Author: dustin
:Updated: $Date$
:Updater: $Author$
'''

import milla
import pkg_resources

[docs]class Controller(object):
 '''The base controller class

 This class simply provides empty ``__before__`` and ``__after__``
 methods to facilitate cooperative multiple inheritance.
 '''

 def __before__(self, request):
 pass

 def __after__(self, request):
 pass

[docs]class FaviconController(Controller):
 '''A controller for the "favicon"

 This controller is specifically suited to serve a site "favicon" or
 bookmark icon. By default, it will serve the *Milla* icon, but you
 can pass an alternate filename to the constructor.

 :param icon: Path to an icon to serve
 :param content_type: Internet media type describing the type of image
 used as the favicon, defaults to 'image/x-icon' (Windows ICO format)
 '''

 def __init__(self, icon=None, content_type='image/x-icon'):
 if icon:
 try:
 self.icon = open(icon)
 except (IOError, OSError):
 self.icon = None
 else:
 try:
 self.icon = pkg_resources.resource_stream('milla', 'milla.ico')
 except IOError:
 self.icon = None
 self.content_type = content_type

 def __call__(self, request):
 if not self.icon:
 raise milla.HTTPNotFound
 response = milla.Response()
 response.app_iter = self.icon
 response.headers['Content-Type'] = self.content_type
 return response

 © Copyright 2011, Dustin C. Hatch.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 		latest

 		0.1.2

search.html

 Navigation

 		
 index

 		
 modules |

 		Milla 0.1.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Dustin C. Hatch.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 		latest

 		0.1.2

_modules/milla/dispatch.html

 Navigation

 		
 index

 		
 modules |

 		Milla 0.1.2 documentation »

 		Module code »

 Source code for milla.dispatch

Copyright 2011 Dustin C. Hatch

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

[docs]class UnresolvedPath(Exception):
 '''Raised when a path cannot be resolved into a handler'''

 © Copyright 2011, Dustin C. Hatch.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 		latest

 		0.1.2

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Milla 0.1.2 documentation »

 All modules for which code is available

		milla.app

		milla.auth

		milla.auth.decorators

		milla.auth.permissions

		milla.controllers

		milla.dispatch

		milla.dispatch.routing

		milla.dispatch.traversal

		milla.util

 © Copyright 2011, Dustin C. Hatch.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 		latest

 		0.1.2

_static/down.png

_static/plus.png

_static/comment.png

_modules/milla/auth.html

 Navigation

 		
 index

 		
 modules |

 		Milla 0.1.2 documentation »

 		Module code »

 Source code for milla.auth

Copyright 2011 Dustin C. Hatch

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''Request authorization

:Created: Apr 5, 2011
:Author: dustin
:Updated: $Date$
:Updater: $Author$
'''

[docs]class NotAuthorized(Exception):
 '''Base class for unauthorized exceptions

 This class is both an exception and a controller callable. If the
 request validator raises an instance of this class, it will be
 called and the resulting value will become the HTTP response. The
 default implementation simply returns HTTP status 403 and a simple
 body containing the exception message.
 '''

 def __call__(self, request, *args, **kwargs):
 '''Return a response indicating the request is not authorized

 :param request: WebOb Request instance for the current request

 All other arguments and keywords are ignored.
 '''

 response = request.ResponseClass(unicode(self))
 response.status_int = 403
 return response

[docs]class RequestValidator(object):
 '''Base class for request validators

 A request validator is a class that exposes a ``validate`` method,
 which accepts an instance of :py:class:`webob.Request` and an
 optional ``requirement``. The ``validate`` method should return
 ``None`` on successful validation, or raise an instance of
 :py:exc:`NotAuthorized` on failure. The base implementation will
 raise an instance of the exception specified by
 :py:attr:`exc_class`, which defaults to :py:class`NotAuthorized`.

 To customize the response to unauthorized requests, it is
 sufficient to subclass :py:class:`NotAuthorized`, override its
 :py:meth:`~NotAuthorized.__call__` method, and specify the class
 in :py:attr:`exc_class`.
 '''

 #: Exception class to raise if the request is unauthorized
 exc_class = NotAuthorized

[docs] def validate(self, request, requirement=None):
 '''Validates a request

 :param request: The request to validate. Should be an instance
 of :py:class:`webob.Request`.
 :param requirement: (Optional) A requirement to check. Should be
 an instance of :py:class:`~milla.auth.permissions.Permission`
 or :py:class:`~milla.auth.permissions.PermissionRequirement`,
 or some other class with a ``check`` method that accepts a
 sequence of permissions.

 The base implementation will perform authorization in the
 following way:

 1. Does the ``request`` have a ``user`` attribute? If not,
 raise :py:exc:`NotAuthorized`.
 2. Is the truth value of ``request.user`` true? If not, raise
 :py:exc:`NotAuthorized`.
 3. Does the ``request.user`` object have a ``permissions``
 attribute? If not, raise :py:exc:`NotAuthorized`.
 4. Do the user's permissions meet the requirements? If not,
 raise :py:exc:`NotAuthorized`.

 If none of the above steps raised an exception, the method will
 return ``None``, indicating that the validation was successful.

 .. note:: WebOb Request instances do not have a ``user``
 attribute by default. You will need to supply this yourself,
 i.e. in a WSGI middleware or in the ``__before__`` method of
 your controller class.
 '''

 try:
 user = request.user
 except AttributeError:
 # No user associated with the request at all
 raise self.exc_class('Request has no user')

 if not user:
 raise self.exc_class('Anonymous not allowed')

 if requirement:
 try:
 user_perms = user.permissions
 except AttributeError:
 raise self.exc_class('User has no permissions')

 if not requirement.check(user_perms):
 raise self.exc_class('User does not have required permissions')

 © Copyright 2011, Dustin C. Hatch.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 		latest

 		0.1.2

_modules/milla/dispatch/routing.html

 Navigation

 		
 index

 		
 modules |

 		Milla 0.1.2 documentation »

 		Module code »

 		milla.dispatch »

 Source code for milla.dispatch.routing

Copyright 2011 Dustin C. Hatch

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''URL router

:Created: Mar 13, 2011
:Author: dustin
:Updated: $Date$
:Updater: $Author$
'''

from milla.dispatch import UnresolvedPath
import functools
import milla
import re
import sys
import urllib
import urlparse

[docs]class Router(object):
 '''A dispatcher that maps arbitrary paths to controller callables

 Typical usage::

 router = Router()
 router.add_route('/foo/{bar}/{baz:\d+}', some_func)
 app = milla.Application(dispatcher=router)

 In many cases, paths with trailing slashes need special handling.
 The ``Router`` has two ways of dealing with requests that should
 have a trailing slash but do not. The default is to send the client
 an HTTP 301 Moved Permanently response, and the other is to
 simply treat the request as if it had the necessary trailing slash.
 A third option is to disable special handling entirely and simply
 return HTTP 404 Not Found for requests with missing trailing
 slashes. To change the behavior, pass a different value to the
 constructor's ``trailing_slash`` keyword.

 Redirect the client to the proper path (the default)::

 router = Router(trailing_slash=Router.REDIRECT)
 router.add_route('/my_collection/', some_func)

 Pretend the request had a trailing slash, even if it didn't::

 router = Router(trailing_slash=Router.SILENT)
 router.add_route('/my_collection/', some_func)

 Do nothing, let the client get a 404 error::

 router = Router(trailing_slash=None)
 router.add_route('/my_collection/', some_func)
 '''

 class REDIRECT(object): pass
 class SILENT(object): pass

 #: Compiled regular expression for variable segments
 template_re = re.compile(r'\{(\w+)(?::([^}]+))?\}')

 def __init__(self, trailing_slash=REDIRECT):
 self.routes = []
 self._cache = {}
 self.trailing_slash = trailing_slash

[docs] def resolve(self, path_info):
 '''Find a controller for a given path

 :param path_info: Path for which to locate a controller
 :returns: A :py:class:`functools.partial` instance that sets
 the values collected from variable segments as keyword
 arguments to the callable

 This method walks through the routing table created with calls
 to :py:meth:`add_route` and finds the first whose template
 matches the given path. Variable segments are added as keywords
 to the controller function.
 '''

 def lookup(path_info):
 for regex, controller, vars in self.routes:
 match = regex.match(path_info)
 if match:
 urlvars = match.groupdict()
 urlvars.update(vars)
 func = functools.partial(controller, **urlvars)
 # Work around for Python Issue 3445 for older versions
 for attr in functools.WRAPPER_ASSIGNMENTS:
 try:
 value = getattr(controller, attr)
 except AttributeError:
 pass
 else:
 setattr(func, attr, value)
 for attr in functools.WRAPPER_UPDATES:
 getattr(func, attr).update(getattr(controller,
 attr, {}))
 self._cache[path_info] = func
 return func

 try:
 return self._cache[path_info]
 except KeyError:
 func = lookup(path_info)
 if func:
 return func
 elif self.trailing_slash and not path_info.endswith('/'):
 # Try to resolve the path with a trailing slash
 new_path_info = path_info + '/'
 func = lookup(new_path_info)
 if func and self.trailing_slash is Router.REDIRECT:
 # Return a dummy function that just raises
 # HTTPMovedPermanently to redirect the client to
 # the canonical URL
 def redir(*args, **kwargs):
 raise milla.HTTPMovedPermanently(location=new_path_info)
 return redir
 elif func and self.trailing_slash is Router.SILENT:
 # Return the function found at the alternate path
 return func
 raise UnresolvedPath

 def _compile_template(self, template):
 '''Compiles a template into a real regular expression

 :param template: A route template string

 Converts the ``{name}`` or ``{name:regexp}`` syntax into a full
 regular expression for later parsing.
 '''

 regex = ''
 last_pos = 0
 for match in self.template_re.finditer(template):
 regex += re.escape(template[last_pos:match.start()])
 var_name = match.group(1)
 expr = match.group(2) or '[^/]+'
 expr = '(?P<%s>%s)' % (var_name, expr)
 regex += expr
 last_pos = match.end()
 regex += re.escape(template[last_pos:])
 regex = '^%s$' % regex
 return re.compile(regex)

 def _import_controller(self, name):
 '''Resolves a string Python path to a callable'''

 module_name, func_name = name.split(':', 1)
 __import__(module_name)
 module = sys.modules[module_name]
 func = getattr(module, func_name)
 return func

[docs] def add_route(self, template, controller, **vars):
 '''Add a route to the routing table

 :param template: Route template string
 :param controller: Controller callable or string Python path

 Route template strings are path segments, beginning with ``/``.
 Paths can also contain variable segments, delimited with curly
 braces.

 Example::

 /some/other/{variable}/{path}

 By default, variable segments will match any character except a
 ``/``. Alternate expressions can be passed by specifying them
 alongside the name, separated by a ``:``.

 Example::

 /some/other/{alternate:[a-zA-Z]}

 Variable path segments will be passed as keywords to the
 controller. In the first example above, assuming ``controller``
 is the name of the callable passed, and the request path was
 ``/some/other/great/place``::

 controller(request, variable='great', path='place')

 The ``controller`` argument itself can be any callable that
 accepts a *WebOb* request as its first argument, and any
 keywords that may be passed from variable segments. It can
 also be a string Python path to such a callable. For example::

 `some.module:function`

 This string will resolve to the function ``function`` in the
 module ``some.module``.
 '''

 if isinstance(controller, basestring):
 controller = self._import_controller(controller)
 self.routes.append((self._compile_template(template),
 controller, vars))

[docs]class Generator(object):
 '''URL generator

 Creates URL references based on a *WebOb* request.

 Typical usage:

 >>> generator = Generator(request)
 >>> generator.generate('foo', 'bar')
 '/foo/bar'

 A common pattern is to wrap this in a stub function::

 url = Generator(request).generate
 '''

 def __init__(self, request, path_only=True):
 self.request = request
 self.path_only = path_only

[docs] def generate(self, *segments, **vars):
 '''Combines segments and the application's URL into a new URL
 '''

 path = '/'.join(str(s) for s in segments)
 while path.startswith('/'):
 path = path[1:]

 url = self.request.relative_url(path, to_application=True)
 if self.path_only:
 split = urlparse.urlsplit(url)
 url = split.path
 if vars:
 url += '?' + urllib.urlencode(vars)
 return url

 © Copyright 2011, Dustin C. Hatch.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 		latest

 		0.1.2

_static/ajax-loader.gif

_modules/milla/util.html

 Navigation

 		
 index

 		
 modules |

 		Milla 0.1.2 documentation »

 		Module code »

 Source code for milla.util

Copyright 2011 Dustin C. Hatch

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''Module milla.uti

Please give me a docstring!

:Created: Mar 30, 2011
:Author: dustin
:Updated: $Date$
:Updater: $Author$
'''

[docs]def asbool(val):
 '''Test a value for truth

 Returns ``False`` values evaluating as false, such as the integer
 ``0`` or ``None``, and for the following strings, irrespective of
 letter case:

 * false
 * no
 * f
 * n
 * off
 * 0

 Returns ``True`` for all other values.
 '''

 if not val:
 return False
 try:
 val = val.lower()
 except AttributeError:
 pass
 if val in ('false', 'no', 'f', 'n', 'off', '0'):
 return False
 return True

 © Copyright 2011, Dustin C. Hatch.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 		latest

 		0.1.2

_modules/milla/auth/decorators.html

 Navigation

 		
 index

 		
 modules |

 		Milla 0.1.2 documentation »

 		Module code »

 		milla.auth »

 Source code for milla.auth.decorators

Copyright 2011 Dustin C. Hatch

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''Convenient decorators for enforcing authorization on controllers

:Created: Mar 3, 2011
:Author: dustin
:Updated: $Date$
:Updater: $Author$
'''

from functools import wraps
from milla.auth import RequestValidator, NotAuthorized, permissions
import milla
import pkg_resources

__all__ = ['auth_required', 'require_perms']

VALIDATOR_EP_GROUP = 'milla.request_validator'

def _find_request(*args, **kwargs):
 try:
 return kwargs['request']
 except KeyError:
 for arg in args:
 if isinstance(arg, milla.Request):
 return arg

def _validate_request(func, requirement, *args, **kwargs):
 request = _find_request(*args, **kwargs)
 ep_name = request.config.get('request_validator', 'default')

 # Override the RequestVariable name with a class from the specified
 # entry point, if one is available. Otherwise, the default is used.
 for ep in pkg_resources.iter_entry_points(VALIDATOR_EP_GROUP, ep_name):
 try:
 RequestValidator = ep.load()
 except:
 continue

 try:
 validator = RequestValidator()
 validator.validate(request, requirement)
 except NotAuthorized as e:
 return e(request)
 return func(*args, **kwargs)

[docs]def auth_required(func):
 '''Simple decorator to enforce authentication for a controller

 Example usage::

 class SomeController(object):

 def __before__(request):
 request.user = find_a_user_somehow(request)

 @milla.auth_required
 def __call__(request):
 return 'Hello, world!'

 In this example, the ``SomeController`` controller class implements
 an ``__before__`` method that adds the ``user`` attribute to the
 ``request`` instance. This could be done by extracting user
 information from the HTTP session, for example. The ``__call__``
 method is decorated with ``auth_required``, which will ensure that
 the user is successfully authenticated. This is handled by a
 request validator.

 If the request is not authorized, the decorated method will never
 be called. Instead, the response is generated by calling the
 :py:exc:`~milla.auth.NotAuthorized` exception raised inside
 the ``auth_required`` decorator.
 '''

 @wraps(func)
 def wrapper(*args, **kwargs):
 return _validate_request(func, None, *args, **kwargs)
 return wrapper

[docs]class require_perms(object):
 '''Decorator that requires the user have certain permissions

 Example usage::

 class SomeController(object):

 def __before__(request):
 request.user = find_a_user_somehow(request)

 @milla.require_perms('some_permission', 'and_this_permission')
 def __call__(request):
 return 'Hello, world!'

 In this example, the ``SomeController`` controller class implements
 an ``__before__`` method that adds the ``user`` attribute to the
 ``request`` instance. This could be done by extracting user
 information from the HTTP session, for example. The ``__call__``
 method is decorated with ``require_perms``, which will ensure that
 the user is successfully authenticated and the the user has the
 specified permissions. This is handled by a *request validator*.

 There are two ways to specify the required permissions:

 * By passing the string name of all required permissions as
 positional arguments. A complex permission requirement will be
 constructed that requires *all* of the given permissions to be
 held by the user in order to validate
 * By explicitly passing an instance of
 :py:class:`~milla.auth.permissions.Permission` or
 :py:class:`~milla.auth.permissions.PermissionRequirement`
 '''

 def __init__(self, *requirements):
 requirement = None
 for req in requirements:
 if isinstance(req, basestring):
 req = permissions.Permission(req)
 if not requirement:
 requirement = req
 else:
 requirement &= req
 self.requirement = requirement

 def __call__(self, func):
 @wraps(func)
 def wrapper(*args, **kwargs):
 return _validate_request(func, self.requirement, *args, **kwargs)
 return wrapper

 © Copyright 2011, Dustin C. Hatch.
 Created using Sphinx 1.1.3+.

 TEST Brought to you by Read the Docs

 		latest

 		0.1.2

_static/file.png

_static/down-pressed.png

